Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The cytokinin type-B response regulator PtRR13 is a negative regulator of adventitious root development in Populus.

Identifieur interne : 003460 ( Main/Exploration ); précédent : 003459; suivant : 003461

The cytokinin type-B response regulator PtRR13 is a negative regulator of adventitious root development in Populus.

Auteurs : Gustavo A. Ramírez-Carvajal [États-Unis] ; Alison M. Morse ; Christopher Dervinis ; John M. Davis

Source :

RBID : pubmed:19395410

Descripteurs français

English descriptors

Abstract

Adventitious root formation at the base of plant cuttings is an innate de novo organogenesis process that allows massive vegetative propagation of many economically and ecologically important species. The early molecular events following shoot excision are not well understood. Using whole-genome microarrays, we detected significant transcriptome remodeling during 48 h following shoot removal in Populus tremula x Populus alba softwood cuttings in the absence of exogenous auxin, with 27% and 36% of the gene models showing differential abundance between 0 and 6 h and between 6 and 24 h, respectively. During these two time intervals, gene networks involved in protein turnover, protein phosphorylation, molecular transport, and translation were among the most significantly regulated. Transgenic lines expressing a constitutively active form of the Populus type-B cytokinin response regulator PtRR13 (DeltaDDKPtRR13) have a delayed rooting phenotype and cause misregulation of CONTINUOUS VASCULAR RING1, a negative regulator of vascularization; PLEIOTROPIC DRUG RESISTANCE TRANSPORTER9, an auxin efflux transporter; and two APETALA2/ETHYLENE RESPONSE FACTOR genes with sequence similarity to TINY. Inappropriate cytokinin action via DeltaDDKPtRR13 expression appeared to disrupt adventitious root development 24 h after shoot excision, when root founder cells are hypothesized to be sensitive to the negative effects of cytokinin. Our results are consistent with PtRR13 acting downstream of cytokinin to repress adventitious root formation in intact plants, and that reduced cytokinin signaling after shoot excision enables coordinated expression of ethylene, auxin, and vascularization pathways leading to adventitious root development.

DOI: 10.1104/pp.109.137505
PubMed: 19395410
PubMed Central: PMC2689991


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The cytokinin type-B response regulator PtRR13 is a negative regulator of adventitious root development in Populus.</title>
<author>
<name sortKey="Ramirez Carvajal, Gustavo A" sort="Ramirez Carvajal, Gustavo A" uniqKey="Ramirez Carvajal G" first="Gustavo A" last="Ramírez-Carvajal">Gustavo A. Ramírez-Carvajal</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, Florida 32611, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, Florida 32611</wicri:regionArea>
<wicri:noRegion>Florida 32611</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Morse, Alison M" sort="Morse, Alison M" uniqKey="Morse A" first="Alison M" last="Morse">Alison M. Morse</name>
</author>
<author>
<name sortKey="Dervinis, Christopher" sort="Dervinis, Christopher" uniqKey="Dervinis C" first="Christopher" last="Dervinis">Christopher Dervinis</name>
</author>
<author>
<name sortKey="Davis, John M" sort="Davis, John M" uniqKey="Davis J" first="John M" last="Davis">John M. Davis</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19395410</idno>
<idno type="pmid">19395410</idno>
<idno type="doi">10.1104/pp.109.137505</idno>
<idno type="pmc">PMC2689991</idno>
<idno type="wicri:Area/Main/Corpus">003582</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003582</idno>
<idno type="wicri:Area/Main/Curation">003582</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003582</idno>
<idno type="wicri:Area/Main/Exploration">003582</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The cytokinin type-B response regulator PtRR13 is a negative regulator of adventitious root development in Populus.</title>
<author>
<name sortKey="Ramirez Carvajal, Gustavo A" sort="Ramirez Carvajal, Gustavo A" uniqKey="Ramirez Carvajal G" first="Gustavo A" last="Ramírez-Carvajal">Gustavo A. Ramírez-Carvajal</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, Florida 32611, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, Florida 32611</wicri:regionArea>
<wicri:noRegion>Florida 32611</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Morse, Alison M" sort="Morse, Alison M" uniqKey="Morse A" first="Alison M" last="Morse">Alison M. Morse</name>
</author>
<author>
<name sortKey="Dervinis, Christopher" sort="Dervinis, Christopher" uniqKey="Dervinis C" first="Christopher" last="Dervinis">Christopher Dervinis</name>
</author>
<author>
<name sortKey="Davis, John M" sort="Davis, John M" uniqKey="Davis J" first="John M" last="Davis">John M. Davis</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cytokinins (metabolism)</term>
<term>Ethylenes (metabolism)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Developmental (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Indoleacetic Acids (metabolism)</term>
<term>Models, Biological (MeSH)</term>
<term>Multigene Family (MeSH)</term>
<term>Phenotype (MeSH)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Roots (genetics)</term>
<term>Plant Roots (growth & development)</term>
<term>Plant Shoots (genetics)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Populus (genetics)</term>
<term>Populus (growth & development)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>RNA Interference (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides indolacétiques (métabolisme)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Cytokinine (métabolisme)</term>
<term>Famille multigénique (MeSH)</term>
<term>Interférence par ARN (MeSH)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Phénotype (MeSH)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (génétique)</term>
<term>Pousses de plante (génétique)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Racines de plante (croissance et développement)</term>
<term>Racines de plante (génétique)</term>
<term>Régulation de l'expression des gènes au cours du développement (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Structure tertiaire des protéines (MeSH)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
<term>Éthylènes (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cytokinins</term>
<term>Ethylenes</term>
<term>Indoleacetic Acids</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Populus</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Roots</term>
<term>Plant Shoots</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Roots</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Populus</term>
<term>Pousses de plante</term>
<term>Protéines végétales</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acides indolacétiques</term>
<term>Cytokinine</term>
<term>Protéines végétales</term>
<term>Éthylènes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Developmental</term>
<term>Gene Expression Regulation, Plant</term>
<term>Models, Biological</term>
<term>Multigene Family</term>
<term>Phenotype</term>
<term>Plants, Genetically Modified</term>
<term>Protein Structure, Tertiary</term>
<term>RNA Interference</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Famille multigénique</term>
<term>Interférence par ARN</term>
<term>Modèles biologiques</term>
<term>Phénotype</term>
<term>Régulation de l'expression des gènes au cours du développement</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Structure tertiaire des protéines</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Adventitious root formation at the base of plant cuttings is an innate de novo organogenesis process that allows massive vegetative propagation of many economically and ecologically important species. The early molecular events following shoot excision are not well understood. Using whole-genome microarrays, we detected significant transcriptome remodeling during 48 h following shoot removal in Populus tremula x Populus alba softwood cuttings in the absence of exogenous auxin, with 27% and 36% of the gene models showing differential abundance between 0 and 6 h and between 6 and 24 h, respectively. During these two time intervals, gene networks involved in protein turnover, protein phosphorylation, molecular transport, and translation were among the most significantly regulated. Transgenic lines expressing a constitutively active form of the Populus type-B cytokinin response regulator PtRR13 (DeltaDDKPtRR13) have a delayed rooting phenotype and cause misregulation of CONTINUOUS VASCULAR RING1, a negative regulator of vascularization; PLEIOTROPIC DRUG RESISTANCE TRANSPORTER9, an auxin efflux transporter; and two APETALA2/ETHYLENE RESPONSE FACTOR genes with sequence similarity to TINY. Inappropriate cytokinin action via DeltaDDKPtRR13 expression appeared to disrupt adventitious root development 24 h after shoot excision, when root founder cells are hypothesized to be sensitive to the negative effects of cytokinin. Our results are consistent with PtRR13 acting downstream of cytokinin to repress adventitious root formation in intact plants, and that reduced cytokinin signaling after shoot excision enables coordinated expression of ethylene, auxin, and vascularization pathways leading to adventitious root development.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19395410</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>08</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>150</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2009</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>The cytokinin type-B response regulator PtRR13 is a negative regulator of adventitious root development in Populus.</ArticleTitle>
<Pagination>
<MedlinePgn>759-71</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.109.137505</ELocationID>
<Abstract>
<AbstractText>Adventitious root formation at the base of plant cuttings is an innate de novo organogenesis process that allows massive vegetative propagation of many economically and ecologically important species. The early molecular events following shoot excision are not well understood. Using whole-genome microarrays, we detected significant transcriptome remodeling during 48 h following shoot removal in Populus tremula x Populus alba softwood cuttings in the absence of exogenous auxin, with 27% and 36% of the gene models showing differential abundance between 0 and 6 h and between 6 and 24 h, respectively. During these two time intervals, gene networks involved in protein turnover, protein phosphorylation, molecular transport, and translation were among the most significantly regulated. Transgenic lines expressing a constitutively active form of the Populus type-B cytokinin response regulator PtRR13 (DeltaDDKPtRR13) have a delayed rooting phenotype and cause misregulation of CONTINUOUS VASCULAR RING1, a negative regulator of vascularization; PLEIOTROPIC DRUG RESISTANCE TRANSPORTER9, an auxin efflux transporter; and two APETALA2/ETHYLENE RESPONSE FACTOR genes with sequence similarity to TINY. Inappropriate cytokinin action via DeltaDDKPtRR13 expression appeared to disrupt adventitious root development 24 h after shoot excision, when root founder cells are hypothesized to be sensitive to the negative effects of cytokinin. Our results are consistent with PtRR13 acting downstream of cytokinin to repress adventitious root formation in intact plants, and that reduced cytokinin signaling after shoot excision enables coordinated expression of ethylene, auxin, and vascularization pathways leading to adventitious root development.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ramírez-Carvajal</LastName>
<ForeName>Gustavo A</ForeName>
<Initials>GA</Initials>
<AffiliationInfo>
<Affiliation>Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, Florida 32611, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Morse</LastName>
<ForeName>Alison M</ForeName>
<Initials>AM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dervinis</LastName>
<ForeName>Christopher</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Davis</LastName>
<ForeName>John M</ForeName>
<Initials>JM</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>04</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003583">Cytokinins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005030">Ethylenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007210">Indoleacetic Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>91GW059KN7</RegistryNumber>
<NameOfSubstance UI="C036216">ethylene</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>Plant Signal Behav. 2010 Mar;5(3):281-3</RefSource>
<PMID Version="1">20037469</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003583" MajorTopicYN="N">Cytokinins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005030" MajorTopicYN="N">Ethylenes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018507" MajorTopicYN="N">Gene Expression Regulation, Developmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007210" MajorTopicYN="N">Indoleacetic Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="N">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018520" MajorTopicYN="N">Plant Shoots</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034622" MajorTopicYN="N">RNA Interference</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>4</Month>
<Day>28</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>4</Month>
<Day>28</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>8</Month>
<Day>4</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19395410</ArticleId>
<ArticleId IdType="pii">pp.109.137505</ArticleId>
<ArticleId IdType="doi">10.1104/pp.109.137505</ArticleId>
<ArticleId IdType="pmc">PMC2689991</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Exp Bot. 2002 Nov;53(378):2193-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12379786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1998 Jun 16;429(3):259-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9662428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2001 Jun;26(6):369-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11406410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jun 8;101(23):8821-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15166290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Dec;24(6):703-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11135105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Jan;98(1):309-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2008 Jan;49(1):47-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18037673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2008 Feb;13(2):85-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18262459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):20027-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19074290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2003;54:605-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14503005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 2001 Jun;52:89-118</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11337393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Nov;15(11):2532-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14555694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2006 Apr;11(4):184-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16531096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2002 Jun-Jul;49(3-4):387-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12036262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Aug 28;98(18):10487-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11504909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 1998 Nov;39(11):1232-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9891419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2002 Oct;5(5):415-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12183180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(3):439-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17158109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2007;7:59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17986329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Feb 14;451(7180):789-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18273012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Mar;16(3):658-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14973166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Dec;124(4):1706-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11115887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Jun;16(6):1365-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15155880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Jan 22;19(2):185-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12538238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12883005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 May 11;96(10):5844-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10318972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jul;135(3):1526-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15247392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2004 Sep;2(9):E258</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15328536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2005 Oct;8(5):518-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16054432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2000 Jun;3(3):217-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10837265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;177(1):77-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17944821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(2):408-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18694447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Jul;96(3):856-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2691-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9482949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 Jul;10(7):339-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15953753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Jan;15(1):165-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12509529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Jan 5;315(5808):101-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17110535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Mar 7;283(10):6261-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18089556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2007 May;99(5):787-822</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17220175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2001 May;21(7):457-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11340046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Aug;20(8):2102-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18723577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Mar;56(413):799-806</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15668224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Nov;18(11):2958-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17098810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Growth Regul. 1999 Dec;18(4):183-190</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10688708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2003 May;130(10):2139-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12668628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Dec;19(12):3889-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18065686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Jun;10(6):1009-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9634588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1996 Apr;8(4):659-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8624440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2003 May 8;542(1-3):37-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12729894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Sep;142(1):63-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16877699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1996 Dec 13;274(5294):1914-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8943205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2003 Sep;23(18):6662-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12944490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 1998 Apr;123(4):555-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9538242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Aug;132(4):1998-2011</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12913156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Mar 17;22(6):1282-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12628921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Nov 16;294(5546):1519-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11691951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2008 Jan;101(2):229-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17956854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 May;111(1):9-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8685277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(1):75-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17872922</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Davis, John M" sort="Davis, John M" uniqKey="Davis J" first="John M" last="Davis">John M. Davis</name>
<name sortKey="Dervinis, Christopher" sort="Dervinis, Christopher" uniqKey="Dervinis C" first="Christopher" last="Dervinis">Christopher Dervinis</name>
<name sortKey="Morse, Alison M" sort="Morse, Alison M" uniqKey="Morse A" first="Alison M" last="Morse">Alison M. Morse</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Ramirez Carvajal, Gustavo A" sort="Ramirez Carvajal, Gustavo A" uniqKey="Ramirez Carvajal G" first="Gustavo A" last="Ramírez-Carvajal">Gustavo A. Ramírez-Carvajal</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003460 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003460 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19395410
   |texte=   The cytokinin type-B response regulator PtRR13 is a negative regulator of adventitious root development in Populus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19395410" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020